ام آر آی (MRI) چیست؟

ام آر آی یا روش تصویربرداری با تشدید مغناطیس Magnetic Resonance Imaging یکی از روش های پیشرفته تصویربرداری پزشکی است. با استفاده از این روش میتوان تصویر بافت های درونی بدن را دید و از آن طریق مشکلات و بیماری های اعضاء بدن را تشخیص داد.
همانطور که میدانیم در روش های تصویر برداری با اشعه ایکس مانند رادیوگرافی ساده و یا سی تی اسکن بدن تحت تابش مقدار معینی از اشعه یونیزه کننده قرار میگیرد که اگر از حد مشخصی بیشتر باشد میتواند موجب اشکالاتی در کارکرد سلول ها شود. ولی در ام آر آی از اشعه ایکس استفاده ای نمیشود و بنابراین نسبت به رادیوگرافی و سی تی اسکن بسیار کم ضررتر است.
روش کار ام ار ای

چگونگی قرار گرفتن اسپین‌های هسته‌ای در میدان مغناطیسی و نوسان با فرکانس لارمور
اساس MRI مبتنی بر حرکت اسپینی هسته‌های اتم هیدورژن موجود در بدن است. این اسپین‌ها از اسپین‌های فردی پروتون‌ها و نوترون‌های درون هسته، ناشی می‌شود. با توجه با اینکه در اتم هیدورژن فقط یک پروتون وجود دارد، خود هسته یک اسپین خالص یا گشتاور زاویه‌ای دارد. این گشتاور زاویه‌ای را هسته‌های MR می‌نامند. با توجه به اینکه هسته هیدروژن دارای حرکت و بار مثبت است. پس طبق قانون القاء فاراده به طور خود به خود یک گشتاور مغناطیسی پیدا می‌کنند؛ و با قرار گرفتن در یک میدان مغناطیسی خارجی مرتب می‌شوند. برخی هسته‌های اتم هیدروژن با میدان هم راستا می‌شوند، و تعداد کمتری از هسته‌ها پاد موازی با میدان مغناطیسی هم راستا می‌شوند. تاثیر میدان مغناطیسی خارجی ایجاد یک نوسان اضافی برای هسته‌های هیدروژن حول خود میدان است که این حرکت را، حرکت تقدیمی می‌نامند. برای آنکه تشدید هسته‌های هیدروژن رخ دهد، یک پالس RF با همان فرکانس حرکت تقدیمی به کار می‌رود. اعمال پالس RF که سبب تشدید هسته‌ها می‌شود، را تحریک می‌نامند. در نتیجه این تشدید هسته‌های هیدروژن هم راستا با میدان مغناطیسی خارجی باقی نمی‌ماند. به زاویه‌ای که بین هسته‌های هیدروژن و میدان مغناطیسی خارجی ایجاد می‌شود، زاویه فلیپ FA می‌گویند. اگر این زاویه ۹۰ درجه باشد بیشترین مقدار انرژی به کویل‌های گیرنده القاء می‌شود. طبق قانون القاء فاراده اگر یک کویل گیرنده در صفحه حرکت این میدان مغناطیسی قرار گیرد، ولتاز در کویل القاء می‌شود. وقتی میدان مغناطیسی عرض صفحه کویل را قطع کند، سیگنال MR تولید می‌شود. این سیگنال نقاط فضای k یا فوریه را تشکیل می‌دهد، با تبدیل فوریه گرفتن از این فضا تصویر نهایی بدست می‌آید.
با ام آر آی می‌توان در جهات فوقانی-تحتانی اگزیال، چپ‌راستی ساژیتال و پس‌وپیش کورونال و حتّی در جهات اُریب و مایل تصویرگیری نمود. یک سیستم ام آر آی از سه میدان مغناطیسی استفاده می‌کند:
1. میدان خارجی ثابت و قوی (B0)
2. میدان ضعیف گرادیانی متغیر
3. میدان حاصل از پالس RF الکترومغناطیسی B

تصویری از آرشیو اداره ثبت اختراعات آمریکا که متعلق به ریموند دامادیان، دانشمند آمریکایی ارمنی-تبار و یکی از مخترعین سیستمهای نوین ام آر آی است.
در سال ۱۹۵۰، حصول تصویر یک بعدی MRI توسط هرمن کار (Herman Carr) گزارش گردید. پاول لاتربر، شیمیدان آمریکائی با کار بر روی تحقیقات پیشین، موفق به ابداع روش‌هایی برای تولید تصاویر دو بعدی و سه بعدی MRI گردید. سرانجام وی در سال ۱۹۷۳ اولین تصویر گرفته شده بر اساس تشدید مغناطیس هسته‌ای (NMR) خود را منتشر نمود. اولین تصویر مقطع نگاری از یک موش زنده در ژانویه ۱۹۷۴ منتشر گردید.
از سوی دیگر تحقیقات و پیشرفت‌های مهمی در زمینهٔ تصویر برداری بر اساس تشدید مغناطیسی هسته برای نخستین بار در دانشگاه ناتینگهام انگلستان صورت پذیرفت، جایی که پیتر منسفیلد فیزیکدان برجستهٔ آن موسسه با گسترش یک روش ریاضی موفق به کاهش زمان تصویربرداری و افزایش کیفت تصاویر نسبت به روش بکارگرفته شده توسط لاتربر گردید. در همان زمان در سال ۱۹۷۱ دانشمند آمریکایی ارمنی تبار ریموند دامادیان استاد دانشگاه ایالتی نیویورک در مقاله‌ای که در مجلهٔ Science منتشر گردید، اعلام نمود که امکان تشخیص تومور از بافت‌های عادی به کمک تصویر برداری NMR میسر می‌باشد.
سرانجام جایزهٔ نوبل پزشکی سال ۲۰۰۳ به خاطر اختراع ام آر آی به پاول لاتربر از دانشگاه ایلینوی در اوربانا شامپاین و پیتر منزفیلد از انگلستان اعطا گردید.
• رادیولوژی بالینی آرمسترانگ، ویراست: 2004

خدمات MRI پایتخت

  • ام ار ای مغز
  • ام ار ای مهره های ستون فقرات
  • ام ار ای مفاصل
  • ام ار ای استخوان های بدون